Compete in HackAPrompt 2.0, the world's largest AI Red-Teaming competition!

Check it out β†’
Prompt Engineering Guide
πŸ˜ƒ Basics
πŸ’Ό Applications
πŸ§™β€β™‚οΈ Intermediate
🧠 Advanced
Special Topics
βš–οΈ Reliability
πŸ”“ Prompt Hacking
πŸ–ΌοΈ Image Prompting
🌱 New Techniques
πŸ”§ Models
πŸ—‚οΈ RAG
πŸ€– Agents
πŸ’ͺ Prompt Tuning
πŸ” Language Model Inversion
πŸ”¨ Tooling
🎲 Miscellaneous
Resources
πŸ“š Bibliography
πŸ“¦ Prompted Products
πŸ›Έ Additional Resources
πŸ”₯ Hot Topics
✨ Credits
πŸ”“ Prompt Hacking🟒 Defensive Measures🟒 Introduction

Introduction

🟒 This article is rated easy
Reading Time: 1 minute
Last updated on August 7, 2024

Sander Schulhoff

Preventing prompt injection can be extremely difficult, and there exist few robust defenses against it. However, there are some common-sense solutions. For example, if your application does not need to output free-form text, do not allow such outputs. There are many different ways to defend a prompt. We will discuss some of the most common ones here.

This chapter covers additional commonsense strategies like filtering out words. It also covers prompt improvement strategies (instruction defense, post-prompting, different ways to enclose user input and XML tagging). Finally, we discuss using an LLM to evaluate output and some more model-specific approaches.

Tip

Interested in prompt hacking and AI safety? Test your skills on HackAPrompt, the largest AI safety hackathon. You can register here.

Sander Schulhoff

Sander Schulhoff is the CEO of HackAPrompt and Learn Prompting. He created the first Prompt Engineering guide on the internet, two months before ChatGPT was released, which has taught 3 million people how to prompt ChatGPT. He also partnered with OpenAI to run the first AI Red Teaming competition, HackAPrompt, which was 2x larger than the White House's subsequent AI Red Teaming competition. Today, HackAPrompt partners with the Frontier AI labs to produce research that makes their models more secure. Sander's background is in Natural Language Processing and deep reinforcement learning. He recently led the team behind The Prompt Report, the most comprehensive study of prompt engineering ever done. This 76-page survey, co-authored with OpenAI, Microsoft, Google, Princeton, Stanford, and other leading institutions, analyzed 1,500+ academic papers and covered 200+ prompting techniques.

🟒 Filtering

🟒 Instruction Defense

🟒 Separate LLM Evaluation

🟒 Other Approaches

🟒 Post-Prompting

🟒 Random Sequence Enclosure

🟒 Sandwich Defense

🟒 XML Tagging

Footnotes

  1. Crothers, E., Japkowicz, N., & Viktor, H. (2022). Machine Generated Text: A Comprehensive Survey of Threat Models and Detection Methods. ↩

  2. Goodside, R. (2022). GPT-3 Prompt Injection Defenses. https://twitter.com/goodside/status/1578278974526222336?s=20&t=3UMZB7ntYhwAk3QLpKMAbw ↩